Speaker
Description
Dark photons have emerged as promising candidates for dark matter, and their search is a top priority in particle physics, astrophysics, and cosmology. We report the first use of a tunable niobium superconducting radio-frequency cavity for a scan search of dark photon dark matter with innovative data analysis techniques. We mechanically adjusted the resonant frequency of a cavity submerged in liquid helium at a temperature of 2 K, and scanned the dark photon mass over a frequency range of 1.37 MHz centered at 1.3 GHz. Our study leveraged the superconducting radio frequency cavity’s remarkably high quality factors of approximately 1010, resulting in the most stringent constraints to date on a substantial portion of the exclusion parameter space on the kinetic mixing coefficient ϵ between dark photons and electromagnetic photons, yielding a value of ϵ < 2.2 × $10^{−16}$.