
THE SMALL-CORRELATED-AGAINST-LARGE-ESTIMATOR FOR 

COSMIC MICROWAVE BACKGROUND LENSING
VICTOR CARL CHAN – UNIVERSITY OF TORONTO; WITH RENÉE HLOŽEK (UOFT), JOEL MEYERS (SMU), ALEX VAN ENGELEN (ASU)

INTERNATIONAL WORKSHOP ON MULTI-PROBE APPROACH TO WAVY DARK MATTER - KOREA UNIVERSITY; 30 NOVEMBER 2023



CMB Lensing

• Cosmic history

• Lensing and 
clustering 
physics

SCALE

• A new method 
for quantifying 
CMB lensing at 
small scales

Parameters

• Impact of SCALE 
on cosmological 
parameter 
constraints

2



NASA (2019)

The cosmic microwave background is a fantastic probe of 

late-Universe physics

3



NASA (2019)

The cosmic microwave background is a fantastic probe of 

late-Universe physics

4



NASA (2019)

The cosmic microwave background is a fantastic probe of 

late-Universe physics

5



Cosmic microwave background photons get gravitationally lensed by 

massive structures along their trajectories

ESA (2013)6



Clusters of galaxies are composed primarily of dark matter

7NASA (2007)



Models of dark matter predict different levels of clustering depending 

on mass, interactions, etc.

8ESA (2023)

Cold Dark Matter Warm Dark Matter



The abundance and distribution of massive clusters is dependent on 

the nature/composition of matter, as well as gravity

9ESA (2023)

Cold Dark Matter Wavy Dark Matter



Massive neutrinos have high velocity dispersion, contributing to less 

concentrated structures

10ESA (2023)

Low 𝑚𝜈 High 𝑚𝜈



Gravitational lensing of cosmic background photons generally 

imparts small angle deflections
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The gravity of massive clusters deflects photons from the original 

temperature field
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The gravity of massive clusters deflects photons from the original 

temperature field
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Lensing re-distributes CMB power across angular scales 

(correlated!!!)
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Existing “quadratic estimators” work to statistically “reconstruct” 

the lensing field
𝜙 ො𝑛 ∼ All gravity along ො𝑛

16

Madhavacheril+ (ACT, 2023)



Existing “quadratic estimators” work to statistically “reconstruct” 

the lensing field

𝜙 ො𝑛 ∼ All gravity along ො𝑛
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Current results measure the lensing power spectrum to L~2000
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Lensing dominates the observed cosmic microwave background 

signal at small angular scales
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Small-scale features in the cosmic microwave background are 

currently dominated by instrument noise and foregrounds
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Upcoming and future experiments will allow us to access smaller 

scale features with lower noise levels

21



Galaxy clustering models can predict different lensing amplitudes at 

small scales
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𝑚𝜈 = 0.06 eV
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Galaxy clustering models can predict different lensing amplitudes at 

small scales

𝑚𝜈 = 0.06 eV

𝑚𝜈 = 0.15 eV
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Dark matter models can predict both amplitude and shape changes 

to the lensing power spectrum → largest effect at smaller scales

25
Hložek+ (2018)



HOW DO WE MEASURE SMALL-SCALE LENSING?

26

Takeaways:

• Upcoming experiments will allow for lower noise observations of small-scale cosmic microwave background 

features

• Lensing features at small scales are sensitive to matter clustering: Dark matter, massive neutrinos, more!

• We need new techniques to take full advantage of future datasets



The gravity of massive clusters deflects photons from the original 

temperature field
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The observed T field is a remapping of the original T field

෨𝑇 ො𝑛
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Small-scale T power is controlled by lensing & the T gradient itself
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The T gradient varies across the sky; does the small-scale power 

induced by lensing change along with it?
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෨𝑇 ො𝑛 = 𝑇 ො𝑛 + ∇𝑇 ො𝑛 ⋅ ∇𝜙 ො𝑛 +⋯
Original Lensing
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CAN WE QUANTIFY SMALL-SCALE LENSING CORRELATIONS?

42

Takeaways:

• Temperature power in the cosmic microwave background is dominated by lensing at small angular scales

• Small-scale power is highly correlated with the large-scale features of the cosmic microwave background

• Lensing features at small scales are sensitive to matter clustering: Dark matter, massive neutrinos, more!



43
Planck Collaboration (2013)



Large-scale features originate from the primary temperature field
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ℓ < 3000



Large-scale features originate from the primary temperature field

Small-scale features are very weak in the primary temperature field
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ℓ < 3000

6000 < ℓ < 8000



Gravitational lensing alters the observed temperature field
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Large-scale features are mostly untouched by lensing
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Large-scale features are mostly untouched by lensing

Small-scale features are generated by lensing (correlated with λ)
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SCALE intermediate products are HIGHLY correlated!!!
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Small-scale features from noise can be stronger than lensing 

signal, but NOT correlated with λ

w/ S4-like Noise
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Small-scale features from noise can be stronger than lensing 

signal, but NOT correlated with λ

No Noise
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Small-Correlated-Against-Large-Estimator: 

Process T map into relevant SS/LS lensing info, and cross-correlate

53
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Total SNR
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Existing “quadratic estimators” work to statistically “reconstruct” 

the lensing field
𝜙 ො𝑛 ∼ All gravity along ො𝑛

Madhavacheril+ (ACT, 2023)
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SCALE observables are weighted integrals of the lensing power 

spectrum over a range of small-scale multipoles 

58



Galaxy clustering models can predict different lensing amplitudes at 

small scales

𝑚𝜈 = 0.06 eV

𝑚𝜈 = 0.15 eV
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HOW DO WE APPLY SCALE TO GET PHYSICAL PARAMETERS?

60

Takeaways:

• Cross-correlations between large- and small-scale cosmic microwave background features accurately recover 

the underlying lensing amplitude at specific small-scale regimes

• Lensing features at small scales are sensitive to matter clustering: Dark matter, massive neutrinos, more!
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SCALE 

observables 

depend on matter 

clustering 

parameters
Recall more mass in neutrinos 

means less concentrated clusters, 

or weaker lensing



Cosmic microwave 

background 

observables can 

measure standard 

cosmological model 

parameters to high 

precision
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Small-scale clustering 

parameters are 

sensitive to SCALE 

observables
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SCALE enables 

a detection of 

the minimum 

neutrino mass!
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CAN WE LEARN ABOUT WAVY DARK MATTER?
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Takeaways:

• Neural network emulators can predict SCALE expected values given cosmological parameters

• ~104 improvement in speed with <1% scatter

• Lensing information provided by SCALE enables a detection of the minimum neutrino mass!



Dark matter models can predict both amplitude and shape changes 

to the lensing power spectrum → largest effect at smaller scales

66
Hložek+ (2018)



We can simulate CMB lensing with a suppressed lensing power 

spectrum → SCALE works the same
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We can simulate CMB lensing with a suppressed lensing power 

spectrum → SCALE works the same

68

Add new parameters:

1. Location of dip

2. Steepness of dip



We may choose one version of SCALE → One lensing amplitude
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Two ‘versions’ of SCALE → Two lensing amplitudes ➔ Shape change
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8000 < ℓ1 < 11000: Banana-shaped degeneracy

8000 < ℓ1 < 10000 & 9000 < ℓ1 < 11000: Less degen. Tighter dist.
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Preliminary



8000 < ℓ1 < 11000: Banana-shaped degeneracy

8000 < ℓ1 < 10000 & 9000 < ℓ1 < 11000: Less degen. Tighter dist.
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Preliminary

~50% less scatter

~33% less scatter



Do more applications of SCALE constrain more shape information?

Doesn’t seem like it (?)
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Do more applications of SCALE constrain more shape information?

Doesn’t seem like it, but what’s the optimal choice?
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 Galaxy clusters at small-scales are sensitive to clustering physics such as dark 

matter models, massive neutrinos, and gravity

75ESA (2023)

Cold Dark Matter Wavy Dark Matter



 Galaxy clusters at small-scales are sensitive to clustering physics such as dark 

matter models, massive neutrinos, and gravity

 We have developed a novel estimator for the lensing amplitude by correlating 

cosmic microwave background features at large/small scales
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 Galaxy clusters at small-scales are sensitive to clustering physics such as dark 

matter models, massive neutrinos, and gravity

 We have developed a novel estimator for the lensing amplitude by correlating 

cosmic microwave background features at large/small scales

 Our SCALE method can outperform traditional methods at small scales

 Small-scale lensing information combined with conventional cosmic microwave 

background observables will provide a detection of the minimum neutrino mass
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 Multiple versions of SCALE can constrain wavy 

dark matter models that predict non-trivial lensing 

suppression structure



Original
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Lensed
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Upcoming and future experiments will allow us to access smaller 

scale features with lower noise levels
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SCALE observables are weighted integrals of the lensing power 

spectrum over a range of small-scale multipoles 
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spectrum over a range of small-scale multipoles 
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Galaxy clustering models can predict different lensing amplitudes at 

small scales
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SCALE 
observables 

depend on matter 
clustering 

parameters
Recall more mass in neutrinos 

means less concentrated clusters, 
or weaker lensing
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SCALE 
observables 

depend on matter 
clustering 

parameters
Recall more mass in neutrinos 

means less concentrated clusters, 
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SCALE analytical 
form is non-trivial 

to compute
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SCALE analytical form depends on the angular 
power spectra of the cosmic microwave 
background and the lensing field

Ω𝑚, 𝑚𝜈, … ⇒ 𝐶ℓ
𝑇𝑇 , 𝐶𝐿

𝜙𝜙
⇒ Ψෘ𝐿
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The angular power spectra of the cosmic 
microwave background and the lensing field 
depend on a set of cosmological parameters

Ω𝑚, 𝑚𝜈, … ⇒ 𝐶ℓ
𝑇𝑇 , 𝐶𝐿

𝜙𝜙
⇒ Ψෘ𝐿
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Is there a way to quickly map cosmological 
parameters to the theory prediction of SCALE 
observables?

Ω𝑚, 𝑚𝜈, … ⇒ 𝐶ℓ
𝑇𝑇 , 𝐶𝐿

𝜙𝜙
⇒ Ψෘ𝐿
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Is there a way to quickly map cosmological 
parameters to the theory prediction of SCALE 
observables?

Input
𝑥0,𝑖

Ω𝑚, 𝑚𝜈 , …
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Is there a way to quickly map cosmological 
parameters to the theory prediction of SCALE 
observables?

Input
𝑥0,𝑖

Output
𝑥𝑁,𝑘

Ω𝑚, 𝑚𝜈 , … Ψෘ𝐿

?????
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Neural networks can learn how to map a set of 
input labels to a set of predicted output labels 
(fancy interpolation)

Input
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Neural networks can learn how to map a set of 
input labels to a set of predicted output labels
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Neural networks in essence provide an 
interpolation between the trained input/output 
labels

Input
𝑥0,𝑖

Output
𝑥𝑁,𝑘

Ω𝑚, 𝑚𝜈 , … Ψෘ𝐿

𝑥𝑛,𝑗 =෍

𝑖

𝑓(𝑤𝑛,𝑖𝑗𝑥𝑛−1,𝑖)
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Neural network emulators predict SCALE spectra to <5% accuracy 

with drastic improvements in speed

Before: 10 s

After:  10-3 s
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Precision of predicted SCALE spectra can be improved through 

simple binning (<5% scatter to <1% scatter)
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Precision of predicted SCALE spectra can be improved through 

simple binning (<5% scatter to <1% scatter)
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SCALE emulator combined with cosmic microwave background 

lensing simulations allow us to construct a mock likelihood

log(𝑃) ∼
𝐷𝑎𝑡𝑎 − 𝑇ℎ𝑒𝑜𝑟𝑦 2

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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SCALE can have higher distinguishing power for clustering models
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Investigate corrections to empirical covariance with simulated data 

observables from the “wrong” answer

log(𝑃) ∼
𝐷𝑎𝑡𝑎 − 𝑇ℎ𝑒𝑜𝑟𝑦 2

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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Supplement data vector with standard quadratic estimator 

observables to quantify SCALE contributions/improvements

log(𝑃) ∼
𝐷𝑎𝑡𝑎 − 𝑇ℎ𝑒𝑜𝑟𝑦 2

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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w/ S4-like Noise

Foreground contamination should be uncorrelated with λ just like 

instrument noise, but does it bias SCALE observables?
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