RESEARCH AND DEVELOPMENT TOWARDS AN AXION SEARCH EXPERIMENT USING QUANTUM SENSING OF MAGNONS

INTERNATIONAL WORKSHOP ON MULTI-PROBE APPROACH TO WAVY DARK MATTERS DECEMBER 2

YAMAN SINGH SHRESTHA, UNIVERSITY OF TOKYO

💏 the University of Tokyo

Akito Kusaka,University of TokyoKenji Kiuchi,University of TokyoYasunobu Nakamura,University of TokyoKeisuke Kato,University of Tokyo

研究拠点形成事業 Core-to-Core Program

1. Axions search with magnon

2. Overcoming Standard Quantum Limit with

qubit

3. R&D @ Kusaka lab

AXION AS EFFECTIVE MAGNETIC FIELD

Ferromagnetic crystal (YIG)

Kittel mode

Our expected target: $m_a: 5 \sim 10 \text{ GHz} \rightarrow 20 \sim 30 \text{ } \mu\text{eV}$

B_z

<u>Magnon</u> Elementary excitation of uniform spin wave mode i.e."Kittel mode" (Harmonic oscillator) **Axions** ~ **Effective magnetic field** (B_a) (DFSZ axion etc.)

Increase in YIG volume \rightarrow Increased signal

 B_a^{sens}

N

 ∇a

 ω_a

 $B_a = \frac{g_{aee}}{2e} \nabla a$

 g_{aee} : Axion-election coupling

: No. of spins in YIG

: Axion field gradient

: Axion frequency

3

MAGNON READOUT WITH CAVITY-KITTEL @ Kusaka lab DR **MODE HYBRID** <u>Copper Cavity with ϕ I mm YIG</u> YIG (ϕ I mm) Microwave on PTFE cavity 20 mm resonator

Cryogenic readout of magnon

- Kittel mode (magnon) readout through microwave cavity (photon)
- DR-cooled below 100 mK
- Sensitivity limited by cryogenic amplifier noise

Cavity-magnon hybrid

CONVENTIONAL AXION SEARCH (WITH CAVITY-KITTEL MODE HYBRID)

5

Coupled Harmonic Resonator Model for cavity – Kittel mode hybrid

Kittel Cavity Readout mode Coupling through С Axion m amplified ω ω_m **RF** line 2π 2π **Detection scheme** Quantum Limited Magnon Axion Photon Readout

CONVENTIONAL AXION SEARCH (WITH CAVITY-KITTEL MODE HYBRID)

Readout

6

Coupled Harmonic Resonator Model for cavity – Kittel mode hybrid

Kittel Cavity Readout mode Coupling through С Axion m amplified ω **RF** line 2π 2π **Detection scheme** Quantum Limited Magnon Axion Photon

SUPERCONDUCTING QUBIT AS MAGNON COUNTER **Qubit-Kittel mode hybrid Experimental setup** Lachance-Quirion et al. (2019) Microwave cavity licrowave Kittel mode-Qubit hybrid implemented γ_{q} with 0.5 mm YIG Ferromagnet Qubit Two **Kittel** @ Nakamura lab $\omega_{\mathbf{q}}$ Qubit ω_{m} level Kittel mode ,mode g_{q-m} system Lachance-Quirion et al. (2017) Strong dispersive regime $|g\rangle$ or $|e\rangle$ $(|\omega_m - \omega_q| \gg g_{q-m} \gg \gamma_m, \gamma_q)$ χ_{q-m} : Qubit - Kittel mode dispersive shift g_{a-m} : Qubit - Kittel mode coupling strength $\omega_a^{n_m} = \left(\omega_q + 2\chi_{q-m}n_m\right)$ Magnon no. dependent Qubit frequency: 0 |

SUPERCONDUCTING QUBIT AS MAGNON COUNTER

Measurement of magnon number with qubit

Unconstrained by SQL

Magnon no. dependent Qubit frequency: $\omega_q^{n_m} = (\omega_q + 2\chi_{q-m}n_m)$

IMPROVING Axion Sensitivity

INCREASE YIG VOLUME

OVERCOME STANDARD QUANTUM LIMIT WITH QUBITS

R&D@ KUSAKALAB

OUR R&D GOALS

We are working with Nakamura group to optimize their Kittel mode – superconducting qubit hybrid system for BSM particle (axions, hidden photons, gravitons) search.

1. BUILD KITTEL MODE – CAVITY HYBRID Reflectance of cavity measured with VNA

- <u>Two peaks</u> of cavity
 Kittel mode
 hybrid system.
 - (single cavity peak in absence of hybridization)

2. INCREASE VOLUME OF YIG

Appearance of undesirable higher modes due to nonuniform magnetic field

 ϕ 2 mm YIG

10 mm

 ϕ I mm

YIG

•

2. IMPROVED FIELD UNIFORMITY **FOR LARGER YIG**

NEXT STEPS

- \rightarrow Cavity Superconducting Qubit hybrid with <u>2 mm YIG</u>
- cf. current design @ Nakamura
 lab has 0.5 mm YIG

Future improvement in volume

SUMMARY

- Axion search is possible through magnons
- Current search constrained by Standard Quantum Limit
- Superconducting Qubit offers way to overcome Standard Quantum Limit
- R & D on-going to optimize the superconducting qubit – Kittel mode (magnon) system for particle searches.

Current instrument

8

Improved DAQ

WHAT ARE MAGNONS? \rightarrow SPIN WAVE QUANTA

 $\gamma \mu_0 H$

Ground state

Uniformly oscillating magnetic field (Eg. Axion)

 ω_m

Ferromagnetic crystal (YIG)

Η,

Spins are aligned in presence of external magnetic field

Kittel mode (Uniformly precessing spins)

Excited state

Quantum Harmonic Oscillator (Single Quantum is a Magnon)

21

MAGNON READOUT WITH CAVITY-KITTEL MODE HYBRID

Typical RF readout line in Dilution Refrigerator

300 K

40 K ^{- -}

Cavity-magnon hybrid

@ Kusaka lab DR

Input Line Readout Line

Ð

Curren

Cavity (photon) and Kittel mode (magnon) coupled through magnetic dipole

RF

field

Magnetic

Cryogenic readout of magnon

Kittel mode (magnon) readout via microwave cavity (photon) DR-cooled below 100 mK \rightarrow reduce thermal noise Microwave amplification by HEMT amplifier (noise: ~4 K)

