

CMB spectral distortions as a probe of dark matter

Jodrell Bank **Centre for Astrophysics**

Bryce Cyr

Korea U, Nov. 30th, 2023

Outline

- CMB spectral distortion primer
- Analytic and numeric methods for distortions
- Wavy dark matter constraints
 - Dark photons
 - Axions (ALPs)
 - ALPs + dark photons
- Conclusions + future ideas

What is a CMB spectral distortion?

COBE/FIRAS measured nearly perfect blackbody of the CMB.

$$\frac{\Delta I_{\nu}}{I_{\nu}} \lesssim 10^{-5} \qquad I_{\nu} = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$

Nonthermal injections of energy and entropy can distort spectrum!

SM signals at $\Delta I_{\nu}/I_{\nu} \simeq 10^{-8}$.

Exotic signals?

Generation of spectral distortions

How does one thermalize a distorted spectrum?

- Energy redistribution
- Photon creation/destruction

Freeze out redshift important! $\Gamma \simeq H$ $\Gamma = n\sigma v$

Compton (energy changing) $z_{\rm C} \simeq 5 \times 10^4$ $(T_{\rm C} \simeq 12 \, {\rm eV})$

 e^{-}

 μ -window: $5 \times 10^4 \leq z \leq 2 \times 10^6$ y-window: $z \leq 5 \times 10^4$

Bremsstrahlung (number changing) $z_{\rm BR} \simeq 5 \times 10^6$ $(T_{\rm BR} \simeq 1.2 \,\rm keV)$

The distorted Universe

What distortions do we expect?

- Global SZ distortion $y \simeq 10^{-6}$
- Relativistic SZ and reionization heating $y \simeq 10^{-8} 10^{-7}$
- Dissipation of small scale modes (Silk damping) $|\mu| \simeq 2 \times 10^{-8}$
- Recombination lines

$$\left|\frac{\Delta I}{I}\right| \simeq 10^{-9}$$

<u>A powerful probe of exotic physics</u>

Primordial magnetic fields

Phase transition dynamics

Primordial GW backgrounds

Enhancement of small-scale power spectrum

BSM constraint space +100s additional models

- Decaying/annihilating dark matter
 - <u>SM signals</u>
 - Reionization probe
 - Silk damping
 - Recombination lines

Axion-photon couplings

Topological defects

Primordial black holes

Experimental prospects

Ground-based:

- TMS Targeting 10-20 GHz region, ARCADE-2 coverage.

Balloon-based:

funding secured, measurement late 2020s.

Space-based:

- COBE/FIRAS Early 90s mission, measured $\Delta I_{\nu}/I_{\nu} \lesssim 10^{-5}$.
- ESA Voyage2050 Stay tuned...

• COSMO - Measuring from Antarctica, target is global SZ signal.

• BISOU - Balloon targeting global SZ distortion ($y \simeq 10^{-6}$). Early

• PIXIE - Proposed and rejected multiple times, target $\Delta I_{\mu}/I_{\mu} \lesssim 10^{-8}$.

The Voyage2050 program

- Spectral distortions have been recognized by ESA as a high priority target for one of the three Voyage2050 L-class missions.
- Preparation has started for eventual call for proposals.
- Opportunities available for those interested in foreground science, synergies, experimental design, distortion theory.

New Horizons in Cosmology with Spectral Distortions of the

Distortion calculations: analytics

source terms can be computed (eg. dQ/dz, dN/dz).

$$\frac{\mu - \text{era:}}{\mu \simeq 1.401} \int_{z_{\mu/y}}^{\infty} dz \left(\frac{1}{\rho_{\gamma}} \frac{dQ}{dz} \right)$$

y-era:
$$y \simeq \frac{1}{4} \int_{z_{rec}}^{z_{\mu/y}} dz \frac{1}{\rho_{\gamma}} \frac{dQ}{dz}$$
 (

Formalism breaks down for large entropy injection in y-era, and if dominant non-thermal injection happens near $z_{\mu/\nu}$.

Green's function method allows for simple estimates when non-thermal

$$\frac{4}{3} \frac{1}{N_{\gamma}} \frac{\mathrm{d}N}{\mathrm{d}z} e^{-\left(\frac{z}{2 \times 10^6}\right)^{5/2}} \qquad z_{\mu/y} \simeq 5 \times 10^{-10}$$

 $(dN/dz \ll 1)$

Numerical methods: CosmoTherm

generation of CMB spectral distortions is possible ($z \leq 2 \times 10^6$).

$$\frac{\partial n_{\nu}}{\partial \tau} - Ht_{\rm C}\nu \frac{\partial n_{\nu}}{\partial \nu} = \frac{dn_{\nu}}{d\tau} \bigg|_{\rm C} + \frac{dn_{\nu}}{d\tau} \bigg|_{\rm DC} + \frac{dn_{\nu}}{d\tau} \bigg|_{\rm BR} + \frac{dn_{\nu}}{d\tau} \bigg|_{\rm Src}$$

- Possible to utilize full kernel expressions for high numerical accuracy. - Interfaces with Recfast++ to compute recombination effects.
- Possesses a basic reionization module. Credit: Jiten Dhandha
- Functionality to incorporate a large variety of exotic injection scenarios (entropy and energy reprocessing).
- Simple likelihood analysis for easy comparison of models with various datasets (distortions, anisotropies, global 21-cm, radio backgrounds).

Code developed to solve the thermalization problem at all redshifts where

Chluba and Thomas (2011)

<u>CosmoTherm:</u> Energy injection scenarios

Flexible enough to handle and produce leading constraints on a variety of exotic injection scenarios:

- Decaying or annihilating dark matter.
- Modifications to the primordial scalar power spectrum.
- Dissipation of primordial tensor modes.
- Decay of cosmic strings. Cyr et al. (2023a,b)
- Accretion and evaporation of primordial black holes.
- + your favourite exotic model!

Chluba (2009) Bolliet et al. (2021) Chluba et al. (2015) Cyr et al. (2023c) Kite et al. (2020) Cyr et al. (2023c)

Acharya et al. (2022)

Wavy dark matter constraints

Thermal mass of photon sets firm lower bound on DM masses constrained by decays, conversions $m_{\rm dm} \gtrsim m_{\nu}^{\rm therm}(z)$.

Some well studied models:

- Dark photon dark matter (resonant oscillations).
- Axion-photon couplings (perturbative decays).
- Axion-photon-dark photon models.

Dark photon dark matter

Hidden U(1) sector will kinetically mix with the standard model photon:

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \frac{\sin\chi_0}{2}B_{\mu\nu}F^{\mu\nu} + \frac{\cos^2\chi_0}{2}m_{\gamma'}^2B_{\mu}B^{\mu} + j_{\rm em}^{\mu}A_{\mu}$$

Interaction and propagation basis not aligned, analogous MSW effect ensures conversions between photon and dark photon.

Landau-Zener expression gives probability for (non-adiabatic) conversions.

$$P_{\gamma \to \gamma'} \simeq \frac{\pi m_{\gamma'}^2 \chi_0^2}{\omega} \left| \frac{\mathrm{d} \ln m_{\gamma}^2(t)}{\mathrm{d} t} \right|_{t=1}^{-1}$$

Mirizzi et al. (2009) Kunze and Vazquez-Mozo (2015)

$$I_{\omega}(m_{\gamma'},\chi_0) = B_{\omega}(1 - P_{\gamma \to \gamma'})$$

 $\Delta I_{\omega}/I_{\omega} \lesssim 10^{-4}$ (FIRAS)

Dark photon dark matter

Constraints from preand post-recombination conversion.

COBE-FIRAS legacy value: Provided leading constraints until circa 2015.

Caputo et al. (2021)

ALP-photon couplings

Most generic ALPs possess a Chern-Simons coupling to the photon:

Spontaneous decay rate very small...

$$\tau_a = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi} \simeq 10^{43} \,\mathrm{s} \left(\frac{10^{-10} \,\mathrm{GeV^{-1}}}{g_{a\gamma\gamma}}\right)^2 \left(\frac{1\,\mu\mathrm{eV}}{m_a}\right)^3 \qquad (\Gamma = 1/\pi)^2$$

CMB background can help stimulate decays!

$$\Gamma_{\text{stim}} \approx \Gamma_{\text{pert}} (1 + 2n_{\gamma}) \qquad n_{\gamma} = (e^x - 1)^{-1} \qquad (x = \hbar \omega/k)$$

For light axions, $\omega/T \ll 1$, strong boost to decay rate $(n_{\nu} \gg 1)$.

$$-\frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$

ALP-photon couplings

Low masses: Not competitive with CAST. High masses: Near-leading constraints, PIXIE would probe much deeper.

ALP-photon-dark photon models

Ingredients: ALP (DM candidate), thermal dark photon bath $(T_{\gamma'} \approx 0.1 T_{\gamma})$.

- DP bath stimulates decay of ALP.
- Resonant conversion to photons can potentially explain RSB.
- SDs constrainable by PIXIE.

Claims of RSB resolution disputed by Acharya and Chluba (2022).

- Improper EG BG modelling.
- Runaway self-stimulation expected with intense non-thermal DP BG.

Caputo et al. (2022)

ALP-photon-dark photon models

Consider presence of dark charge conjugation symmetry on ALP and DP, only unsuppressed operator is:

Interaction converts photons to dark photons in the presence of ALP DM background. Also works with ALP and DP roles reversed.

$$\lambda \bigwedge_{t_0} \bigvee \bigwedge_{\phi} \bigvee_{\phi} \bigvee_{\phi$$

Hook et al. (2023)

 $\mathscr{L}_{\rm int} = -\frac{\mathscr{E}_{a\gamma\gamma'}}{\varDelta} aB_{\mu\nu}\tilde{F}^{\mu\nu}$

 γ_D

Hook et al. (2023)

ALP = DM $\gamma \rightarrow \gamma'$

$$(g_{a\gamma\gamma'} \sim 1/$$

Possible project ideas

- the CMB?
- era, increasing the Silk-damping prediction on μ ?
- alter the expected y-distortion from reionization?

• Spectral distortions also have synergies with other observational probes (e.g. 21-cm Acharya, Cyr, Chluba (2023) and GW backgrounds Cyr, Chluba, Acharya (2023)), can induced signals in these channels also be probed using

• Are there subtle signatures that can still be explored? Does wavy dark matter induce extra patch-mixing in the pre-recombination

• How does the presence of a cutoff scale on small-scale structure

Conclusions

- exotic physics scenarios, including wavy dark matter.
- studied in CosmoTherm to ensure robust predictions.

• CMB spectral distortions can be used to probe a wide variety of

• Constraints have been studied for dark photon dark matter and axion-photon interactions, but significant improvements to these calculations are now possible, both analytically and numerically.

Models with more complicated dynamics and source terms can be

• Hints of possible explanation of extra-radio background from some models! Further studies necessary to better explore parameter space.

Thank you!

CosmoTherm: Reionization module Credit: Jiten Dhandha (2021)

Solver models reionization following treatment of Furlanetto (2006) Venumadhav et al. (2018) - Inclusion of x_r which is solved iteratively Fialkov and Barkana (2019)

alongside $T_{\rm spin}$.

Ly- α background modelled by Hirata (2006), only stellar contributions.

Additionally

- Ionizing photons per baryon, $N_{\rm ion} = 4000$
- Star formation efficiency, $f_* = 0.1$
- Escape fraction, $f_{esc} = 0.1$
- Ly- α background scaling factor, $f_{\alpha} = 1$ - X-ray heating scaling factor, $f_X = 1$

Mittal et al. (2022)

See Acharya, Cyr, Chluba (2023) for more details

Silk damping - a standard model signal

Diffusion damping and freestreaming play significant role in the amplitude of small-scale modes.

Where does the energy initially present in those modes go?

Into the background plasma!

Doesn't necessarily imply a spectral distortion...

The sum of unequal temperature BBs will not produce a thermal spectrum.

Energy injection rate

Physical picture: A given k-mode enters the horizon, oscillates, and dumps energy into the background when crossing the damping scale $(k_{\rm D}[z])$

Hu and Sugiyama (1995) Chluba, Khatri, Sunyaev (2012) -Cyr et al. (2023)

$$\frac{\mathrm{d}(Q_{\mathrm{ac}}/\rho_{\gamma})}{\mathrm{d}z} \approx \frac{A^2}{Ha} \frac{32c^2}{45\dot{\tau}(z)} \int \mathrm{d}k \frac{k^4}{2\pi^2} P_{\zeta}(k) \mathrm{e}^{-k^2/k_{\mathrm{D}}^2(z)}$$
Chluba and Grin (2013)

• $\dot{\tau} = \sigma_{\rm T} N_{\rm e} c$ is rate of Thomson scattering.

SDs sensitive to PPS at SM prediction

• $A \approx 0.9$ for adiabatic fluctuations, suppressed for isocurvature.

• $\partial_t k_D^{-2} \approx 8c^2/45a^2\dot{\tau}$ determines damping scale. Kosowsky and Turner (1995)

$$50 \,\mathrm{Mpc}^{-1} \lesssim k \lesssim 10^4 \,\mathrm{Mpc}^{-1}$$

on: $\mu \simeq 2 \times 10^{-8}$

CosmoTherm: Photon processing

- Evolves photons in frequency range $10^{-5} \leq x \leq 200$ (CMB peak $x \simeq 3$). - Adaptive time stepping from $z \leq 10^7$.
- Can utilize CSpack as well as BRpack for added precision.

 $x = h\nu / kT$

-0.8

-1.2 -0.01

0.1

Chluba (2014)

Chluba et al. (2019)

ntensity

-200

-300

50

30

10

