Cosmic Birefringence by Dark Photon

Dong Woo Kang (JBNU)

Based on [arXiv:2307.14798]

Sung Mook Lee, Jinn-Ouk Gong, Dong hui Jeong, Dong-Won Jung, Seongchan Park

International Workshop on Multi-probe approach to wavy dark matters, Korea University in Seoul, South Korea, 30 Nov. 2023

Dong Woo Kang (JBNU)

CMBworkshop 2023

Contents

1. Introduction

2. Cosmic Birefringence

2. Cosmic Birefringence from Dark Photon4. Conclusion

Birefringence

Some crystals have <u>varying refractive index depending on</u> polarization, splitting two linear polarization by refracting them into different directions:

If the Universe is filled with a pseudoscalar field, such as an axion, couple to photon by the Chern-Simons term:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \theta \partial^{\mu} \theta - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} g_a \theta F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Integration by part, and the Bianchi identity ($\partial_{\nu} \tilde{F}^{\mu\nu} = 0$):

$$\mathscr{L}_{CS} = \frac{1}{2} g_a \theta F_{\mu\nu} \tilde{F}^{\mu\nu} = -g_a A_{\nu} (\partial_{\mu} \theta) \tilde{F}^{\mu\nu} \equiv A_{\nu} J^{\nu}$$

The Maxwell's equations

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = -g_a(\nabla \theta) \cdot \mathbf{B}$$
$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + g_a(\dot{\theta}\mathbf{B} - \mathbf{E} \times \nabla \theta)$$

The Maxwell's equations become the wave equations:

Assumptions: small g_a , θ caring much slower than **E** and **B**.

The Maxwell's equations become the wave equations:

Dispersion for right-handed(+) and left-handed (-) polarizations:

$$\omega_{\pm}^2 = k^2 \pm g_a k \dot{\theta}$$
, or to linear order in g_a , $\omega_{\pm} = k \pm \frac{1}{2} g_a k \dot{\theta}$

If the Universe is filled with a pseudoscalar field, such as an axion, couple to photon by the Chern-Simons term:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \theta \partial^{\mu} \theta - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} g_a \theta F_{\mu\nu} \tilde{F}^{\mu\nu}$$

The coupling makes the phase velocities of two circular polarization state diverge: $\omega_{\pm} = k \pm \frac{1}{2}g_a k\dot{\theta}$

$$\rightarrow$$
 Linear polarization rotates with $\beta = \frac{1}{2}g_a \int dt\dot{\theta}$

Linear polarization rotates with $\beta = \frac{1}{2}g_a \int \frac{dt\dot{\theta}}{dt\dot{\theta}}$

Temperature map of the CMB

Polarization map of the CMB

Plank map smoothed with 5° filter

CMB Polarization around the peak

 $10^{\circ} x 10^{\circ}$, smoothed at 20'

E-mode : Polarization directions are parallel or perpendicular to the wave number direction

B-mode : Polarization directions are 45° tilted with respect to the wave number direction

E-mode : Polarization directions are parallel or perpendicular to the wave number direction

B-mode : Polarization directions are 45° tilted with respect to the wave number direction

E-mode : Polarization directions are parallel or perpendicular to the wave number direction

For the parity flip, E-mode remains the same, whereas B-mode change the sign

Two-point correlation functions invariant under the parity flip:

$$\begin{split} \langle E_{\ell} E_{\ell'}^* \rangle &= (2\pi)^2 \delta_D^{(2)} (\ell - \ell') C_{\ell}^{EE} \\ \langle B_{\ell} B_{\ell'}^* \rangle &= (2\pi)^2 \delta_D^{(2)} (\ell - \ell') C_{\ell}^{BB} \\ \langle T_{\ell} E_{\ell'}^* \rangle &= \langle T_{\ell}^* E_{\ell'} \rangle = (2\pi)^2 \delta_D^{(2)} (\ell - \ell') C_{\ell}^{TE} \end{split}$$

The other combinations $\langle T_{\ell}B^*_{\ell'}\rangle$ and $\langle E_{\ell}B^*_{\ell'}\rangle$ are not invariant under the parity flip:

We can use these combinations to probe parity-violating physics (e.g., Axions)

EB correlation from the cosmic birefringence

 $\mathbf{E} \leftrightarrow \mathbf{B}$ conversion by rotation of the linear polarization plane

The intrinsic EE, BB, and EB power spectra 13.8 billion years ago would yield the observed EB as

$$C_{\ell}^{EB,obs} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\beta) + C_{\ell}^{EB} \cos(4\beta)$$

Traditionally, one would find β by fitting $C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}$ to the observed $C_{\ell}^{EB,obs}$ using the best-fitting CMB model, and assuming the intrinsic EB to vanish, $C_{\ell}^{EB} = 0$.

Cosmic Birefringence (WMAP + Planck)

Miscalibration angles Make only small contributions thanks to the cancellation.

$$\chi^2 = 65.3$$
 for $DOF = 72$

Frequency dependence?

Mixing photon with dark photon

An alternative route to generate cosmic birefringence by kinetic mixing between the photon and dark photon:

$$\mathscr{L} = -\frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \frac{1}{4}\hat{X}^{\mu\nu}\hat{X}_{\mu\nu} - \frac{\varepsilon}{2}\hat{F}_{\mu\nu}\hat{X}^{\mu\nu} - \frac{1}{2}m_X^2\hat{X}^2 + eJ_\mu\hat{A}^\mu + e_XJ_{X\mu}\hat{X}^\mu$$

Diagonalizatoin:

$$\begin{pmatrix} \hat{A}^{\mu} \\ \hat{X}^{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{\varepsilon}{\sqrt{1-\varepsilon^2}} \\ 0 & \frac{1}{\sqrt{1-\varepsilon^2}} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} A^{\mu} \\ X^{\mu} \end{pmatrix}$$

Case 1: massive dark photon

The mixing angle $\theta = 0$ to make the SM photon massless.

The interaction terms:

$$eJ_{\mu}\hat{A}^{\mu} + e_{X}J_{X\mu}\hat{X}^{\mu} \approx eJ_{\mu}A^{\mu} + \left(e_{X}J_{X\mu} - \varepsilon eJ_{\mu}\right)X^{\mu}$$

SM photons do not directly couple to dark current Strongly constrained by SM fermion coupling to the massive dark photon (Fabbricheshi et al., 2020).

We will NOT consider this case here.

Case 2: massless dark photon

The mixing angle
$$\sin \theta = \epsilon$$
, $\cos \theta = \sqrt{1 - \epsilon^2}$

The interaction terms:

$$eJ_{\mu}\hat{A}^{\mu} + e_{X}J_{X\mu}\hat{X}^{\mu} \approx e_{X}J_{X\mu}X^{\mu} + \left(eJ_{\mu} - \varepsilon e_{X}J_{X\mu}\right)A^{\mu}$$

SM photons couple to the dark-sector current, which is constrained by the milli-charged particle search in LEP and LHC.

Lee, Kang, Gong, Jeong, Jung, and Park (2022)

Dark CMB

Coupled Maxwell's equations

Maxwell's equation for SM photon and dark photon

$$\partial_{\mu}F^{\mu\nu} = 4\pi \left(J^{\nu} + \epsilon J_{X}^{\nu}\right) \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = 0$$
$$\partial_{\mu}X^{\mu\nu} = 4\pi J_{X}^{\nu} \qquad \partial_{\mu}\tilde{X}^{\mu\nu} = 0$$

Coupled Maxwell's equations

Maxwell's equation for SM photon and dark photon

$$\partial_{\mu}F^{\mu\nu} = 4\pi \left(J^{\nu} + \epsilon J_{X}^{\nu}\right) \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = 0$$
$$\partial_{\mu}X^{\mu\nu} = 4\pi J_{X}^{\nu} \qquad \partial_{\mu}\tilde{X}^{\mu\nu} = 0$$

We solve these equations by defining $A^{\mu} = A^{\mu} - \epsilon X^{\mu}$:

$$\partial_{\mu}F^{'\mu\nu} = 4\pi j^{\nu} \qquad \partial_{\mu}\tilde{F}^{'\mu\nu} = 0$$

Dark photon has a relative phase α at the CMB-decoupling time.

Dark photon has birefringence β_{DM} since the CMB-decoupling time.

Induced Birefringence

initial misalignment (random)

Induced Birefringence

Polarization of SM Photon

Density matrix after photon-dark photon mixing

$$\rho = \rho_0 - 2\epsilon \sqrt{\frac{I_X}{I_0}} \sqrt{PP_X} \begin{pmatrix} (1-P)\cos\delta_X \sin\left(\alpha + \frac{\beta_X}{2}\right)\sin\left(\frac{\beta_X}{2}\right) & e^{-i\delta_X}\cos\left(\alpha + \frac{\beta_X}{2}\right)\sin\left(\frac{\beta_X}{2}\right) \\ e^{i\delta_X}\cos\left(\alpha + \frac{\beta_X}{2}\right)\sin\left(\frac{\beta_X}{2}\right) & -(1-P)\cos\delta_X\sin\left(\alpha + \frac{\beta_X}{2}\right)\sin\left(\frac{\beta_X}{2}\right) \end{pmatrix}$$

• Birefringence (
$$U \neq 0$$
) $\beta(\hat{n}) \simeq 2\epsilon \sqrt{\frac{I_X P_X}{I_0 P}} \cos \delta_X \cos \left(\alpha + \frac{\beta_X}{2}\right) \sin \left(\frac{\beta_X}{2}\right)$

- No isotropic birefringence at $O(\epsilon)$ $\langle \beta \rangle = 0$ if α is random
- Non-zero variance $\langle \beta^2 \rangle = \epsilon \frac{I_X}{I_0} \left\langle \frac{P_X}{P} \right\rangle \sin^2 \left(\frac{\beta_X}{2} \right) \lesssim (1^\circ)^2$ [1603.08193]

• Circular polarization (V \neq 0) $\langle V^2 \rangle \simeq 4\epsilon^2 I_0 I_X \bar{P} \bar{P}_X \sin^2 \left(\frac{\beta_X}{2}\right) \lesssim (10\mu \text{K})^2$ [1704.00215]

$$\epsilon F \cdot X \Rightarrow \beta_{\gamma} \sim \epsilon \sqrt{\frac{I_{D\gamma}}{I_{CMB}}} \sin \beta_{D\gamma}$$

•The frequency dependence is weak as long as $T_{Dark-\gamma} \lesssim T_{CMB}$.

Dark recombination preceded the baryonic recombination

- Unless we have a strong coupling to correlate the polarization of dark U(1) at dark recombination to the CMB's linear polarization, the relative linear polarization is random.
- •The random angle removed the average birefringence signal. $\langle \beta \rangle = 0$
- Leading contribution = Spectral distortion, trispectrum, and Circular polarization.

Conclusion

Parity is violated in Universe

- Cosmic birefringence
- and more (e.g.) galactic 4 point functions

We study the effect of birefringent dark photon that mixes with photon with mixing parameter ϵ

We found : isotropic birefringence $\langle \beta \rangle = 0$, $\langle \beta^2 \rangle \sim \epsilon$ and circular polarization $\sim \epsilon^2$ if the mixing is the source.

Thank You for Attention!

Polarization and scattering

Local anisotropy and Polarization

Dark photon constraints

Milli-charged particle bounds

