## **Cosmic Birefringence by Dark Photon**

#### Dong Woo Kang (JBNU)



**Based on [arXiv:2307.14798]** 

**Sung Mook Lee, Jinn-Ouk Gong, Dong hui Jeong, Dong-Won Jung, Seongchan Park**

International Workshop on Multi-probe approach to wavy dark matters, Korea University in Seoul, South Korea, 30 Nov. 2023

**Dong Woo Kang (JBNU) CMBworkshop 2023 2023-11-30**

# **Contents**

#### 1. Introduction

#### 2. Cosmic Birefringence

# 2. Cosmic Birefringence from Dark Photon 4. Conclusion

### **Birefringence**

Some crystals have varying refractive index depending on polarization, splitting two linear polarization by refracting them into diferent directions:



**Dong Woo Kang (JBNU) CMBworkshop 2023 2023-11-30**

If the Universe is flled with a pseudoscalar feld, such as an axion, couple to photon by the Chern-Simons term:

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \theta \partial^{\mu} \theta - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} g_{a} \theta F_{\mu\nu} \tilde{F}^{\mu\nu}
$$

Integration by part, and the Bianchi identity  $(\partial_{\mu} \tilde{F}^{\mu\nu} = 0)$ :

$$
\mathcal{L}_{CS} = \frac{1}{2} g_a \theta F_{\mu\nu} \tilde{F}^{\mu\nu} = -g_a A_\nu (\partial_\mu \theta) \tilde{F}^{\mu\nu} \equiv A_\nu J^\nu
$$

#### The Maxwell's equations

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$
  

$$
\nabla \cdot \mathbf{B} = 0
$$
  

$$
\nabla \cdot \mathbf{E} = -g_a(\nabla \theta) \cdot \mathbf{B}
$$
  

$$
\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + g_a(\dot{\theta} \mathbf{B} - \mathbf{E} \times \nabla \theta)
$$

#### The Maxwell's equations become the wave equations:



Assumptions: small  $g_a$ ,  $\theta$  caring much slower than **E** and **B**.

#### The Maxwell's equations become the wave equations:



Dispersion for right-handed(+) and left-handed (-) polarizations:

$$
\omega_{\pm}^2 = k^2 \pm g_a k \dot{\theta}
$$
, or to linear order in  $g_a$ ,  $\omega_{\pm} = k \pm \frac{1}{2} g_a k \dot{\theta}$ 

If the Universe is flled with a pseudoscalar feld, such as an axion, couple to photon by the Chern-Simons term:

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \theta \partial^{\mu} \theta - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} g_{a} \theta F_{\mu\nu} \tilde{F}^{\mu\nu}
$$

The coupling makes the phase velocities of two circular polarization state diverge:  $\omega_{\pm} = k \pm$ 1 2  $g_a k \dot{\theta}$ 

$$
\rightarrow
$$
 Linear polarization rotates with  $\beta = \frac{1}{2}g_a\int dt\dot{\theta}$ 

Linear polarization rotates with  $\beta =$ 1 2 *ga* <sup>∫</sup> *dt* <u>.</u><br>] *θ*





#### **Temperature map of the CMB**



#### **Polarization map of the CMB**



Plank map smoothed with 5° filter

#### **CMB Polarization around the peak**

 $10^o \text{x} 10^o$ , smoothed at 20'



E-mode : Polarization directions are parallel or perpendicular to the wave number direction



B-mode : Polarization directions are 45° tilted with respect to the wave number direction



E-mode : Polarization directions are parallel or perpendicular to the wave number direction



B-mode : Polarization directions are 45° tilted with respect to the wave number direction



**Dong Woo Kang (JBNU) CMBworkshop 2023 2023-11-30**

E-mode : Polarization directions are parallel or perpendicular to the wave number direction



For the parity flip, E-mode remains the same, wave number directions and wave number of  $\mathsf{wnew}$ whereas B-mode change the sign



**Dong Woo Kang (JBNU) CMBworkshop 2023 2023-11-30**

Two-point correlation functions invariant under the parity fip:

 $\langle E_{\ell} E_{\ell'}^*$  $\rangle = (2\pi)^{2} \delta_{D}^{(2)} (\ell - \ell') C_{\ell}^{EE}$  $\langle B_{\ell} B_{\ell'}^* \rangle$  $\langle \rangle = (2\pi)^2 \delta_D^{(2)}(\ell - \ell') C_{\ell}^{BB}$  $\langle T_{\ell} E_{\ell'}^*$  $\rangle = \langle T_{\ell}^* E_{\ell'} \rangle = (2\pi)^2 \delta_D^{(2)} (\ell - \ell') C_{\ell'}^{TE}$ 

The other combinations  $\langle T_e B_{e'}^* \rangle$  and  $\langle E_e B_{e'}^* \rangle$  are not invariant under the parity fip: ⟩

We can use these combinations to probe parity-violating physics (e.g., Axions)

#### **EB correlation from the cosmic birefringence**

 $E \leftrightarrow B$  conversion by rotation of the linear polarization plane

The intrinsic EE, BB, and EB power spectra 13.8 billion years ago would yield the observed EB as

$$
C_{\ell}^{EB,obs} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\beta) + C_{\ell}^{EB} \cos(4\beta)
$$

Traditionally, one would find  $\beta$  by fitting  $C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}$  to the observed  $C^{EB,obs}_{\ell}$  using the best-fitting CMB model, and assuming the intrinsic EB to vanish,  $C_{\ell}^{EB} = 0$ . *ℓ*

#### **Cosmic Birefringence (WMAP + Planck)**





Miscalibration angles Make only small contributions thanks to the cancellation.

$$
\chi^2 = 65.3
$$
 for *DOF* = 72

#### **Frequency dependence?**



## **Mixing photon with dark photon**

An alternative route to generate cosmic birefringence by kinetic mixing between the photon and dark photon:

$$
\mathcal{L} = -\frac{1}{4}\hat{F}^{\mu\nu}\hat{F}_{\mu\nu} - \frac{1}{4}\hat{X}^{\mu\nu}\hat{X}_{\mu\nu} - \frac{\varepsilon}{2}\hat{F}_{\mu\nu}\hat{X}^{\mu\nu} - \frac{1}{2}m_{X}^{2}\hat{X}^{2} + eJ_{\mu}\hat{A}^{\mu} + e_{X}J_{X\mu}\hat{X}^{\mu}
$$

Diagonalizatoin:

$$
\begin{pmatrix} \hat{A}^{\mu} \\ \hat{X}^{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{\varepsilon}{\sqrt{1 - \varepsilon^2}} \\ 0 & \frac{1}{\sqrt{1 - \varepsilon^2}} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} A^{\mu} \\ X^{\mu} \end{pmatrix}
$$

#### **Case 1: massive dark photon**

The mixing angle  $\theta = 0$  to make the SM photon massless.

The interaction terms:

$$
eJ_{\mu}\hat{A}^{\mu} + e_{X}J_{X\mu}\hat{X}^{\mu} \approx eJ_{\mu}A^{\mu} + \left(e_{X}J_{X\mu} - \varepsilon eJ_{\mu}\right)X^{\mu}
$$

SM photons do not directly couple to dark current Strongly constrained by SM fermion coupling to the massive dark photon (Fabbricheshi et al., 2020).

#### We will NOT consider this case here.

#### **Case 2: massless dark photon**

The mixing angle 
$$
\sin \theta = \epsilon
$$
,  $\cos \theta = \sqrt{1 - \epsilon^2}$ 

The interaction terms:

$$
eJ_{\mu}\hat{A}^{\mu} + e_{X}J_{X\mu}\hat{X}^{\mu} \approx e_{X}J_{X\mu}X^{\mu} + \left(eJ_{\mu} - \varepsilon e_{X}J_{X\mu}\right)A^{\mu}
$$

SM photons couple to the dark-sector current, which is constrained by the milli-charged particle search in LEP and LHC.

Lee, Kang, Gong, Jeong, Jung, and Park (2022)

#### **Dark CMB**



#### **Coupled Maxwell's equations**

Maxwell's equation for SM photon and dark photon

$$
\partial_{\mu}F^{\mu\nu} = 4\pi \left( J^{\nu} + \epsilon J^{\nu}_{X} \right) \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = 0
$$

$$
\partial_{\mu}X^{\mu\nu} = 4\pi J^{\nu}_{X} \qquad \qquad \partial_{\mu}\tilde{X}^{\mu\nu} = 0
$$

### **Coupled Maxwell's equations**

Maxwell's equation for SM photon and dark photon

$$
\partial_{\mu}F^{\mu\nu} = 4\pi \left( J^{\nu} + \epsilon J^{\nu}_{X} \right) \qquad \partial_{\mu}\tilde{F}^{\mu\nu} = 0
$$

$$
\partial_{\mu}X^{\mu\nu} = 4\pi J^{\nu}_{X} \qquad \partial_{\mu}\tilde{X}^{\mu\nu} = 0
$$

We solve these equations by defining  $A^{\mu} = A^{\mu} - \epsilon X^{\mu}$ .

$$
\partial_{\mu}F^{'\mu\nu}=4\pi j^{\nu}\qquad \partial_{\mu}\tilde{F}^{'\mu\nu}=0
$$

Dark photon has a relative phase  $\alpha$  at the CMB-decoupling time.

Dark photon has birefringence  $\beta_{DM}$  since the CMB-decoupling time.

**Dong Woo Kang (JBNU) CMBworkshop 2023 2023-11-30**

#### **Induced Birefringence**



initial misalignment (random)

**Induced Birefringence** 

#### **Polarization of SM Photon**

Density matrix after photon-dark photon mixing  
\n
$$
\rho = \rho_0 - 2\epsilon \sqrt{\frac{I_X}{I_0}} \sqrt{PP_X} \left( \frac{(1-P) \cos \delta_X \sin \left( \alpha + \frac{\beta_X}{2} \right) \sin \left( \frac{\beta_X}{2} \right)}{e^{i\delta_X} \cos \left( \alpha + \frac{\beta_X}{2} \right) \sin \left( \frac{\beta_X}{2} \right)} - (1-P) \cos \delta_X \sin \left( \alpha + \frac{\beta_X}{2} \right) \sin \left( \frac{\beta_X}{2} \right) \right)
$$

• **Birefringence (U** 
$$
\neq
$$
 0)  $\beta(\hat{n}) \simeq 2\epsilon \sqrt{\frac{I_X P_X}{I_0 P}} \cos \delta_X \cos \left(\alpha + \frac{\beta_X}{2}\right) \sin \left(\frac{\beta_X}{2}\right)$ 

- No isotropic birefringence at  $\bm{o}(\epsilon)$   $\langle \beta \rangle = 0$  if  $\alpha$  is random P.
- Non-zero variance  $\langle \beta^2 \rangle = \epsilon \frac{I_X}{I_0} \left\langle \frac{P_X}{P} \right\rangle \sin^2 \left( \frac{\beta_X}{2} \right) \lesssim (1^\circ)^2$  [1603.08193]

**Circular polarization (V**  $\neq$  **0)**  $\langle V^2 \rangle \simeq 4\epsilon^2 I_0 I_X \bar{P} \bar{P}_X \sin^2 \left(\frac{\beta_X}{2}\right) \lesssim (10 \mu\text{K})^2$ [1704.00215]

$$
\epsilon F \cdot X \Rightarrow \beta_{\gamma} \sim \epsilon \sqrt{\frac{I_{D\gamma}}{I_{CMB}}} \sin \beta_{D\gamma}
$$

•The frequency dependence is weak as long as  $T_{Dark-\gamma}\lesssim T_{CMB}.$ 

•Dark recombination preceded the baryonic recombination

- •Unless we have a strong coupling to correlate the polarization of dark U(1) at dark recombination to the CMB's linear polarization, the relative linear polarization is random.
- •The random angle removed the average birefringence signal.  $\langle \beta \rangle = 0$
- $\cdot$ Leading contribution = Spectral distortion, trispectrum, and Circular polarization.

#### **Conclusion**

Parity is violated in Universe

- Cosmic birefringence
- and more (e.g.) galactic 4 point functions

We study the effect of birefringent dark photon that mixes with photon with mixing parameter  $\epsilon$ 

We found : isotropic birefringence  $\langle \beta \rangle = 0$ ,  $\langle \beta^2 \rangle \sim \epsilon$  and circular polarization  $\sim \epsilon^2$  if the mixing is the source.

#### **Thank You for Attention!**

#### **Polarization and scattering**





#### **Local anisotropy and Polarization**



#### **Dark photon constraints**



**Dong Woo Kang (JBNU) CMBworkshop 2023 2023-11-30**

#### **Milli-charged particle bounds**

