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Axion Moditied Maxwell’s Equations
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ABRA Run 3
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ABRA Calibration

Goal: Characterize end-to-end gain of the system
- DAQ readout voltage to g,,, conversion

Method: Inject fake, axion mimetic signal through
hardware



ABRA Calibration
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ABRA Calibration

— Run 3 — Run 1 (prev. work) - == Calculated gain, Run 3 Compare expected
gain to measured

gain at various
20 1 frequencies
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DMRadio-50L

Resonant Lumped Element Haloscope
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DMRadio-50L

Resonant Lumped Element Haloscope
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Pickup Sheath

Resonant Lumped Element Haloscope

DMRadio-50L



DMRadio-50L

Resonant Lumped Element Haloscope

LC Resonator
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DMRadio-50L
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DMRadio-50L Calibration

Goal 1: Characterize end-to-end gain of the system for all tuning steps
DAQ readout voltage to g,,, conversion

Goal 2: Calibrate resonant frequency at each tuning step
wg and Q of resonant components

L
- Axion Sensitivity Width
—— Resonator Lineshape

Amplifier Noise

Power Spectrum (mV?)

Frequency (Hz)
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DMRadio-50L Calibration

1. Excite pickup structure to perform end-to-end calibration
* Axion mimetic injection

2. Measure individual components to get wgy, amplification, and Q factor
« Sideband injection
* Ringdown measurement



DMRadio-50L Calibration
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Axion Mimetic Injection

Axion excitation

Calibration scheme
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Axion Mimetic Injection

* Magnet enclosed in high Q sheath

Axion excitation Calibration scheme



DMRadio-50L Calibration

1. Excite pickup structure to perform end-to-end calibration

* Axion mimetic injection

2. Measure individual components to get wgy, amplification, and Q factor

[ « Sideband injection }

 Ringdown measurement

A
\/

J

A
\/

eff

B

0

A5

Pickup Sheath LC Resonator SQUID

W\



Sideband Injection

* Inject two monotonic tones outside of axion signal band
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Sideband Injection

«  Compare V,,/V, of SBI frequency to get SQUID amplification
*  Measure SQUID amplification at each tuning step
e Calibration simultaneous with data taking
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Ringdown Measurement

* Inject on-resonance signal directly onto resonator
* Record free decay
« N to half amplitude gives Q factor and wy

cycles

« Demonstrated with DMRadio Pathfinder
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ABRACADABRA Gravitational Wave Search

axions and high frequency gravitational waves

VxB=28 1 yxM+ 2
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Domcke et al. Phys. Rev. Lett. 129, 041101
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Gravitational Wave Sources
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Axion Signal

freq(l)=1E5 Hz  Arrow Volume: External current density Volume: Current density norm (A/m?) freq(1)=1E5 Hz i Slice: Magnetic flux depsity. z component (T)

0.05

Axion current in the ABRACADABRA The z-component of the magnetic field
toroidal magnet resulting from an axion effective current



Gravitational Wave Signal

freq(1)=1E5 Hz  Arrow Volume: External current density Volume: Current density norm (A/m?) freall)=1ES Hz /.~ Slice: Magnetic flux defsity, z component (T)

0.05

Gravitational wave current in the The z-component of the magnetic field

ABRACADABRA toroidal magnet resulting from a gravitational wave
effective current
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Gravitational wave calibration loop

Gravitational Wave Detector Geometry
\‘. 'lh Gravitational wave pickup loop

\ \ ) I Axion pickup loop

\\\\“ \|'t|' Axion calibration loop
\ \\lm‘ H“ I!y,‘ ‘
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ABRA Grav Calibration

Goal 1: Characterize gain of the system
DAQ readout voltage to gravitational wave induced flux
conversion

Goal 2: Prove simultaneity of axion and gravitational wave
Does a gravitational wave signal excite the axion pickup loop
(and vice versa)?
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ABRA Grav Calibration

Inject axion mimetic signal through calibration loop
1. Read out axion pickup = Measure axion end-to-end gain
2. Read out grav pickup = Measure cross talk
Inject gravitational wave signal through calibration loop
3. Read out axion pickup = Measure cross talk
4. Read out grav pickup = Measure grav end-to-end gain
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ABRA Grav Calibration

Inject axion mimetic signal through calibration loop
1. Read out axion pickup = Measure axion end-to-end gain
2. Read out grav pickup = Measure cross talk
Inject gravitational wave signal through calibration loop
3. Read out axion pickup = Measure cross talk
4. Read out grav pickup = Measure grav end-to-end gain
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ABRA Grav Cross Talk

Gain of off-diagonal

components (cross talk
measurements) larger
than expected
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ABRA Grav Calibration
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ABRA Grav Calibration
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ABRA Grav Calibration

Could also be caused by

SQUID and wire cross
talk.

Tests underway to
disentangle cross talk
source.

Axion calibration loop
Axion pickup loop
Grav pickup loop

Grav calibration loop
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Summary

JARBRACANARRA,
Gravitational wave search
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ABRA Calibration

Signal

( Generator

calibration loop



Axion Mimetic Injection

* Magnet enclosed in high Q sheath

» To keep high Q factor, need to minimize
conductive toroidal elements

* Cannot take data with axion mimetic loop
in detector
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Gravitational Wave Sources

* Primordial black holes (1 kHz - 1e11 GHz)
* Exotic compact objects (1 kHz - 1e11 GHz)
* Superradiance (1 kHz — 300 kHz)



Gravitational Wave Figure of Merit




Gravitational Wave Strain Limits

UHF-GW Landscape . S Domcke et al.
Phys. Rev. Lett.

129, 041101
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FIG. 1. The UHF-GW experimental landscape, with the ap-

proach introduced in this work shown in color. DMRadiog  FIG. 3. The GW strain sensitivity of low-mass axion halo-
shows the projgcted reach of the fu!l suite of DMRadio instru- scopes. We recast the existing limits obtained by ABRA [6]
ments (50L, m”, and GUT) adopting our advocated figure-8 (green) and SHAFT [7] (purple). For DMRadio we use the
pickup loop geometry. Looking tq the.far future, e also show projected future sensitivity of the three instruments that will
the reach of an upscaled DMRadio with a magnetl? ﬁeld vol- make up that program: 50L (blue), e (cyan), and GUT
ume lof'loghr.n % labelled DMRS_lOO'hA sub.set of e)ilslimg pr‘O— (pink) [10, 11]. In each case, results are shown for two choices
posals in this frequency range are shown in grey, taken from .., * o S giiAl CaEraiE: 10y, =I1i(epadte) A0k = 1 03

Refs. [1, 2], as well as an estimate for the required sensitivity All ) s — f
to see one signal from primordial black hole (PBH) binaries (transp ar?nt). LCAU. ts assume a SIETal. PICKUD) 100D, 20k
results using the optimal figure-8, see Fig. 1.

per year. Additional specifics are provided in the text.




