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Why Axions?

Axion/ALP = Pseudo Nambu-Goldstone boson of spontaneously broken U(1)

𝜙 ≡ 𝜙 + 2𝜋𝑓

• Periodicity: axion decay constant 𝑓 = U(1) breaking scale 
• Shift symmetry: axion interactions suppressed by 𝑓

• Mass from shift symmetry breaking: 𝑚! =
"#$%& "'(()&' *+),-$./ "0,1) !
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For large 𝑓, axion is a naturally light and feebly interacting scalar particle!
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Why Axions?

Axions can resolve the puzzles of the Standard Model: 

Strong CP problem → QCD axion

Dark matter → Axion/Axion-like Particle

Cosmic inflation → Axion/Axion-like Particle

Gauge hierarchy problem → Relaxion

Matter-antimatter asymmetry → Axion/Axion-like Particle

and also other difficulties of the SM
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Axion Interactions

Perturbative shift symmetry 
3 types of interactions: Yukawa, derivative, and anomalous couplings
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Light and feebly coupled axions with various couplings to the SM 
→ Potential to be probed by cosmological, astrophysical, and laboratory observations
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U(1) current density

perturbative non-perturbative



Axion Dark Matter

Electromagnetic coupling

where 

• Axion decay width 

• Light axions are compelling candidate for the dark matter
in our Universe 
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ABRACADABRA

Axion Dark Matter

Electromagnetic coupling

where 

• Axion-induced EM fields due to effective electric charge and current 
→ Photonic probes for axion detection 
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Resonant cavity

Axion helioscope

https://github.com/cajohare/AxionLimits



Wavy Dark Matter

Axion dark matter 
• Macroscopic de Broglie wave length for light axion dark matter

where 𝑣 is the velocity dispersion of the galactic halo

For 𝜆BC ≫ (average interparticle separation),
halo axions behave as a classical oscillating field with oscillating amplitude 

c.f. Wave turbulence and interference in filaments
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Philp Mocz et al, 2019

Cosmic web formed by gravitational interactions 
and interference of axion waves 



Axion Production

Production mechanisms
• Misalignment mechanism 
Non-relativistic axions from axion coherent oscillations 

• Thermal production 
Thermal axions if coupled to the SM 

• Decay of heavy particles 
Relativistic axions if produced from a particle much heavier than the axion 

• Decay of topological defects
Axions from topological defects if symmetry breaking occurs after inflation
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Search for Axion Dark Matter 

Experiments  
Axion dark matter search requires various experimental approaches
- Huge possible ranges of 𝑓 and 𝑚!, and 3 types of axion couplings

→
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https://github.com/cajohare/AxionLimits



Axionic Extension

QCD Axion
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Strong CP Problem

CP violation in the QCD sector
𝛿DEF ∼ arg det[𝑦G𝑦GH, 𝑦I𝑦IH] ≃ 1.2 ± 0.3

�̅� = 𝜃 + arg det[ 𝑦G𝑦I] with a topological QCD 𝜃-term given by  J
<9=!
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Constraint from neutron electron dipole moment 
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Bound on the neutron EDM

|�̅�| < 10KLM

Why so tiny?
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QCD Axion

Peccei-Quinn solution 
Promote 𝜃 to a scalar field, the QCD axion, associated with 𝑈 1 NO to cancel �̅� dynamically

QCD axion

• Mass:  

• Coupled to gluons, and possibly to photon and fermions
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where 𝐶4 = 𝑂(1) are model-dependent, e.g. KSVZ, DFSZ
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Peccei, Quinn 1977



QCD Axion

Appealing dark matter candidate for large 𝑓
• Axion relic abundance assuming spontaneous PQ breaking during inflation

Ω!ℎ9 ≃ 0.18𝜃$.$9
2
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where 𝜃$.$ is the axion misalignment angle

• QCD axion window
10SGeV ≤ 𝑓 ≤ 10L9GeV

astrophysical bound

To avoid axion overproduction for 𝜃$.$ ∼ 1
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𝜃 ≡ 𝜙/𝑓



Cosmology with QCD Axion

Fraction of axion DM for 0.3 ≤ 𝜃$.$ ≤ 1.2

Overproduction
Correct dark matter abundance

Ω! = ΩVF requires fine-tuning 
𝜃$.$ close to the potential hilltop (anharmonic effect)

𝜃!"! = 1.2

𝜃!"! = 0.3

Ω! = ΩVF requires fine-tuning 
𝜃$.$ close to the origin
→ Anthropic argument?

Lyth 1990
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Cosmology with QCD Axion

Spontaneous PQ symmetry breaking before or during inflation
→ Axion quantum fluctuations during inflation 

→ Imprint on the CMB radiation 
Constraint on the isocurvature power spectrum

- do not affect the total energy density during the primordial inflation

- turn into isocurvature density perturbations at the QCD phase transition

Planck collaboration
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𝜃 ≡ 𝜙/𝑓



Cosmology with QCD Axion

Isocurvature bound on the inflation scale 
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Ω# = Ω$%
Ω# = 0.1 Ω$%
Ω# = 0.01 Ω$%

Anharmonic effect



Theoretical Issues

How to protect the PQ symmetry against quantum gravity?
Quantum gravity effects generally break any global symmetry:

for positive integers 𝑛 and 𝑚
→ PQ solution to the strong CP problem is spoiled unless 𝜆 or 𝛼 is highly suppressed

Tiny PQ breaking can be important in cosmology because QCD is asymptotically free 
→ Nonzero neutron EDM
→ Modified evolution of the QCD axion

Georgi, Hall, Wise 1981, Dine, Seiberg 1986, …
Recently, increased interests
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Hawking 1975, Abbot, Wise 1989, Coleman, Lee 1990, …

Higaki, KSJ, Kitajima, Takahashi 2016,

KSJ, Matsukawa, Nakagawa, Takahashi 2022

Recent work, e.g. Choi, Im, Jodlowski, 2023



Theoretical Issues

How to generate an intermediate axion decay constant?
• 𝑓 is determined by the dynamics stabilizing U(1) breaking scalar field 

• QCD axion dark matter requires 𝑓 below about 10L9 GeV unless 𝜃$.$ is unnaturally tiny

𝑓W ≡ Φ ≤ 10L9 GeV   

Any connection to other fundamental scales?
Planck scale, GUT scale, supersymmetry breaking scale, seesaw scale, …

e.g. 𝑓 = 𝑀N1𝑚XYXZ in SUSY models
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Axionic Extension

Axion for Inflation
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Cosmic Inflation

Essential part of the standard cosmological model
• Initial conditions for the hot big bang universe
• Primordial density perturbations

Exponential expansion via slow-roll inflation: unusually flat potential flat relative to the vacuum energy  

Stability against radiative corrections and quantum gravity effects
→ Axion is a natural candidate for an inflaton (shift symmetry)
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Natural Inflation

Minimal setup for axion-driven inflation

• Marginally consistent with the recent Planck observations on CMB

• Trans-Planckian decay constant 

→ Quantum gravity, 2
[*+

\
with 𝑛 > 0, may spoil the field theoretic description  
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Freese, Frieman, Olinto 1990

natural inflation

shape and magnitude of the inflaton potential



Axion-driven Inflation 

Models with multiple fields such that the axion potential during inflation is given by

• Compatible with the Planck results if 𝑓 ≥ 10]×𝑚!

• sub-Planckian decay constant

• Models with axion(=inflaton) as dark matter
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Czerny, Higaki, Takahashi 2014
Gong, KSJ 2021

Jaeckel, Spannowski 2015

Daido, Takahashi, Yin 2017, Gong, KSJ 2021

Ross, German 2009, 2010, Gong, KSJ 2021



Axionic Extension

Relaxion
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Gauge Hierarchy Problem 

How to stabilize the weak scale against unknown UV physics?

Supersymmetry, extra dim, composite Higgs, and so on
→ TeV particles with sizable couplings to the SM
→ Such extensions naturally have WIMP as cold dark matter
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Gauge Hierarchy Problem 

LHC searches so far
• No significant deviations from the SM
• No clear signals for physics beyond the SM

Direct and indirect dark matter searches so far
• No evidence of WIMPs

25

APPEC Committee Report



Relaxation Mechanism

New approach to the gauge hierarchy problem
Cosmological evolution of the relaxion to select the Higgs mass:

Relaxion slow-rolls while scanning µ^9 from cutoff scale 9 to negative, and stops
due to barriers formed by EWSB
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Graham, Kaplan, Rajendran 2015

wiggles after EWSB

hidden QCD and quarks



Relaxion Couplings 

Relaxion-Higgs mixing after EWSB
Stringent constraints for relaxion at sub-MeV to multi-GeV from rare K and B meson decays
and beam-dump experiments   
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Flacke, Frugiuele, Fuchs, Gupta, Perez 2016

Choi, Im 2016



Axionic Extension

Axion for Baryogenesis
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Baryon Asymmetry

Baryogenesis   
Sakharov’s condition: B violation, C and CP violation, interactions out of thermal equilibrium
→ In SM, B+L anomaly, CP phases in the fermion sector, EW phase transition (crossover)
→ Not sufficient

B+L violation by EW sphaleron transitions in symmetric phase
→ EW phase transition is the last period affecting baryon asymmetry 
Baryogenesis scenarios 
• Nonzero B−L above the EW scale: Leptogenesis, Affleck-Dine, …
• B+L generation at EW scale and sphaleron decoupling: EW baryogenesis 

LHC (direct searches) and EDM experiments 
c.f. severe constraint from electron EDM, 𝑑_ < 10K9S𝑒 ⋅ cm
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ACME II 2018



Axion-driven Baryogenesis

Axion derivative coupling to fermions   

→ Time derivative of axion, 𝑑𝜙/𝑑𝑡, serves as a chemical potential for the fermion number 

Spontaneous baryogenesis
Axion evolution + B violation much faster than thermalization 

e.g. axion-driven baryogenesis with axion-dependent Higgs mass, 

observed baryon asymmetry for axion with mass, 𝑚! ∼
`),- "0,1) !

2
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Cohen, Kaplan 1987, and lots of works
Recent review, e.g. Simone, Kobayashi 2016   

KSJ, Jung, Shin 2019, 2020



Summary 
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Why Axions?

Naturally light and feebly interacting scalar particle due to shift symmetry

Why axions? 
§ Appealing candidate for the unknown degrees of freedom: dark matter, inflaton
§ Make the SM more natural by solving the strong CP problem, gauge hierarchy problem
§ Explain the matter-antimatter asymmetry of the universe 
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Why Axions?

Theoretically well-motivated axions 
→ Strong theoretical support for axion searches! 

Potential to be probed by cosmological, astrophysical, and laboratory observations
→ Many new experimental techniques developed to detect axions

THANK YOU 

33

Search for axion dark matter


