Review on Axions in Particle Physics

Kwang Sik JEONG

December 1, 2023

Korea University

International Workshop on Multi-probe approach to wavy dark matters

Why Axions?

Axion/ALP = Pseudo Nambu-Goldstone boson of spontaneously broken U(1)

- Periodicity: axion decay constant f = U(1) breaking scale
- Shift symmetry: axion interactions suppressed by *f*
- Mass from shift symmetry breaking: $m_{\phi} = \frac{(\text{shift symmetry breaking scale})^2}{f}$

For large *f*, axion is a *naturally light* and *feebly interacting* scalar particle!

Why Axions?

Axions can resolve the puzzles of the Standard Model:

```
Strong CP problem \rightarrow QCD axion
```

Dark matter → Axion/Axion-like Particle

Cosmic inflation → Axion/Axion-like Particle

Gauge hierarchy problem \rightarrow Relaxion

Matter-antimatter asymmetry → Axion/Axion-like Particle

and also other difficulties of the SM

Axion Interactions

Perturbative shift symmetry

3 types of interactions: Yukawa, derivative, and anomalous couplings

$$\begin{pmatrix} m_{\psi}e^{ic_{1}\frac{\phi}{f}}\bar{\psi}_{L}\psi_{R} + \frac{\partial_{\mu}\phi}{f}\left(c_{2}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi + \cdots\right)_{U(1) \text{ current density}} + \left(\frac{c_{3}}{32\pi^{2}}\frac{\phi}{f}F_{\mu\nu}\tilde{F}^{\mu\nu}\right)_{\text{perturbative}}$$

Physical quantities should be invariant under chiral field redefinition : $\psi_{L,R} \rightarrow e^{\pm i \alpha \frac{r}{f}} \psi_{L,R}$

Light and feebly coupled axions with various couplings to the SM

→ Potential to be probed by *cosmological*, *astrophysical*, and *laboratory* observations

Axion Dark Matter

Electromagnetic coupling

$$-\frac{g_{\phi\gamma}}{4}\phi F_{\mu\nu}\tilde{F}^{\mu\nu} = g_{\phi\gamma}\phi\vec{E}\cdot\vec{B} \quad \text{where} \quad g_{\phi\gamma} = \frac{\alpha_{\rm EM}}{2\pi}\frac{c_{\rm EM}}{f}$$

• Axion decay width

$$\Gamma(\phi\to\gamma\gamma)=\frac{g_{\phi\gamma}^2m_\phi^3}{64\pi}$$

• *Light axions* are compelling candidate for the *dark matter* in our Universe

Axion Dark Matter

Electromagnetic coupling

$$-\frac{g_{\phi\gamma}}{4}\phi F_{\mu\nu}\tilde{F}^{\mu\nu} = g_{\phi\gamma}\phi\vec{E}\cdot\vec{B} \quad \text{where} \quad g_{\phi\gamma} = \frac{\alpha_{\rm EM}}{2\pi}\frac{c_{\rm EM}}{f}$$

$$\nabla \cdot \vec{E} = \rho - g_{\phi\gamma} \vec{B} \cdot \nabla \phi$$
$$\nabla \times \vec{B} = \partial_t \vec{E} + \vec{J} + g_{\phi\gamma} (\vec{B} \partial_t \phi - \vec{E} \times \nabla \phi)$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\partial_t \vec{B}$$

- Axion-induced EM fields due to effective electric charge and current
- → Photonic probes for axion detection

Movable platform

X-ray de

Shielding

Axion helioscope

https://github.com/cajohare/AxionLimits

Wavy Dark Matter

Axion dark matter

Macroscopic de Broglie wave length for light axion dark matter

$$\lambda_{\rm dB} = \frac{2\pi}{m_{\phi}v} \simeq 1.5 \,\rm km \left(\frac{\mu eV}{m_{\phi}}\right) \left(\frac{250 \,\rm km/s}{v}\right)$$

where v is the velocity dispersion of the galactic halo

For $\lambda_{dB} \gg$ (average interparticle separation),

halo axions behave as a *classical oscillating field* with oscillating amplitude

$$\phi(t) = \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \cos\left(m_{\phi}t\right)$$

c.f. Wave turbulence and interference in filaments

Cosmic web formed by gravitational interactions

Axion Production

Production mechanisms

Misalignment mechanism

Non-relativistic axions from axion coherent oscillations

Thermal production

Thermal axions if coupled to the SM

• Decay of heavy particles

Relativistic axions if produced from a particle much heavier than the axion

Decay of topological defects

Axions from topological defects if symmetry breaking occurs after inflation

Ф

Search for Axion Dark Matter

Experiments

Axion dark matter search requires various experimental approaches

- Huge possible ranges of f and m_{ϕ} , and 3 types of axion couplings

https://github.com/cajohare/AxionLimits

Axionic Extension

QCD Axion

Strong CP Problem

CP violation in the QCD sector

 $\delta_{\text{CKM}} \sim \arg(\det[y_u y_u^+, y_d y_d^+]) \simeq 1.2 \pm 0.3$

 $\bar{\theta} = \theta + \arg(\det[y_u y_d])$ with a topological QCD θ -term given by $\frac{\theta}{32\pi^2}G_{\mu\nu}\tilde{G}^{\mu\nu}$

Constraint from neutron electron dipole moment

Bound on the neutron EDM $|\bar{\theta}| < 10^{-10}$

Why so tiny?

QCD Axion

Peccei, Quinn 1977

Peccei-Quinn solution

Promote θ to a scalar field, the QCD axion, associated with $U(1)_{PQ}$ to cancel $\bar{\theta}$ dynamically

$$\left\langle \bar{\theta} \right\rangle = \left\langle \frac{\phi}{f} \right\rangle = 0$$

QCD axion

- Mass: $m_{\phi} \simeq 6 \mu \mathrm{eV} \left(\frac{10^{12} \mathrm{GeV}}{f} \right)$
- Coupled to gluons, and possibly to photon and fermions

$$m_{\psi}e^{i\boldsymbol{c_1}\frac{\phi}{f}}\bar{\psi}_L\psi_R + \frac{\partial_{\mu}\phi}{f}\left(\boldsymbol{c_2}\bar{\psi}\gamma^{\mu}\gamma_5\psi + \cdots\right) + \frac{\boldsymbol{c_3}}{32\pi^2}\frac{\phi}{f}F_{\mu\nu}\tilde{F}^{\mu\nu}$$

where $C_i = O(1)$ are model-dependent, e.g. KSVZ, DFSZ

QCD Axion

Appealing dark matter candidate for large f

• Axion relic abundance assuming spontaneous PQ breaking during inflation

$$\Omega_{\phi} h^2 \simeq 0.18 \theta_{\rm ini}^2 \left(\frac{f}{10^{12} {\rm GeV}}\right)^{1.19} \left(\frac{\Lambda_{\rm QCD}}{400 {\rm MeV}}\right)$$

where θ_{ini} is the axion misalignment angle

• QCD axion window

 $10^{9} \text{GeV} \le f \le 10^{12} \text{GeV}$ astrophysical bound

To avoid axion overproduction for $\theta_{\rm ini}\sim 1$

Cosmology with QCD Axion

Fraction of axion DM for $0.3 \le \theta_{ini} \le 1.2$

Cosmology with QCD Axion

Spontaneous PQ symmetry breaking before or during inflation

 \rightarrow Axion quantum fluctuations during inflation

- do not affect the total energy density during the primordial inflation
- turn into isocurvature density perturbations at the QCD phase transition
- \rightarrow Imprint on the CMB radiation

 $\delta\theta_{\rm ini}$

Constraint on the isocurvature power spectrum

$$\Delta_{S}^{2} \simeq \left(\frac{\Omega_{a}}{\Omega_{\rm DM}} \frac{\partial \ln \Omega_{a}}{\partial \theta_{\rm ini}} \frac{H_{\rm inf}}{2\pi f}\right)^{2} < 8.3 \times 10^{-11}$$

Planck collaboration

Cosmology with QCD Axion

Isocurvature bound on the inflation scale

Theoretical Issues

Georgi, Hall, Wise 1981, Dine, Seiberg 1986, ... Recently, increased interests

How to protect the PQ symmetry against quantum gravity?

Quantum gravity effects generally break any global symmetry:

Hawking 1975, Abbot, Wise 1989, Coleman, Lee 1990, ...

$$\Delta V = \lambda \left(\frac{f}{M_{Pl}}\right)^n f^4 \cos\left(m\frac{\phi}{f} + \alpha\right)$$

for positive integers n and m

 \rightarrow PQ solution to the strong CP problem is spoiled unless λ or α is highly suppressed

Tiny PQ breaking can be important in cosmology because QCD is asymptotically free

- \rightarrow Nonzero neutron EDM Recent work, e.g. Choi, Im, Jodlowski, 2023
- \rightarrow Modified evolution of the QCD axion

Higaki, KSJ, Kitajima, Takahashi 2016, KSJ, Matsukawa, Nakagawa, Takahashi 2022 Event horizon

Theoretical Issues

How to generate an intermediate axion decay constant?

- f is determined by the dynamics stabilizing U(1) breaking scalar field
- QCD axion dark matter requires f below about 10^{12} GeV unless θ_{ini} is unnaturally tiny

 $f_a \equiv \langle \Phi \rangle \le 10^{12} \text{ GeV}$

Any connection to other fundamental scales?

Planck scale, GUT scale, supersymmetry breaking scale, seesaw scale, ...

e.g. $f = \sqrt{M_{\rm Pl}m_{\rm SUSY}}$ in SUSY models

Axionic Extension

Axion for Inflation

Cosmic Inflation

Essential part of the standard cosmological model

- Initial conditions for the hot big bang universe
- Primordial density perturbations

Exponential expansion via slow-roll inflation: unusually flat potential flat relative to the vacuum energy Stability against radiative corrections and quantum gravity effects \rightarrow *Axion* is a natural candidate for an *inflaton* (shift symmetry)

Natural Inflation

Freese, Frieman, Olinto 1990

Minimal setup for axion-driven inflation

$$V = V_0 - M^4 \cos\left(\frac{\phi}{f}\right)$$
 with $M^4 = V_0$

• Marginally consistent with the recent Planck observations on CMB

shape and magnitude of the inflaton potential

$$n_{s} \approx 1 + 2\frac{V''}{V} - 3\left(\frac{V'}{V}\right)^{2}$$
$$r = \frac{A_{t}}{A_{s}} \approx 8\left(\frac{V'}{V}\right)^{2}$$

- Trans-Planckian decay constant
 - \rightarrow Quantum gravity, $\left(\frac{f}{M_{\rm Pl}}\right)^n$ with n > 0, may spoil the field theoretic description

Axion-driven Inflation

Models with multiple fields such that the axion potential during inflation is given by

$$V = V_0 - M^4 \cos\left(\frac{\phi}{f}\right)$$
 with $M^4 \ll V_0$

- Compatible with the Planck results if $f \ge 10^6 \times m_{\phi}$
- sub-Planckian decay constant

$$f \sim \sqrt{\frac{M^4}{V_0}} M_{Pl}$$

• Models with axion(=inflaton) as dark matter

Daido, Takahashi, Yin 2017, Gong, KSJ 2021

Gong, KSJ 2021

Czerny, Higaki, Takahashi 2014

Ross, German 2009, 2010, Gong, KSJ 2021

Axionic Extension

Relaxion

Gauge Hierarchy Problem

How to stabilize the weak scale against unknown UV physics?

Supersymmetry, extra dim, composite Higgs, and so on

- \rightarrow TeV particles with sizable couplings to the SM
- → Such extensions naturally have WIMP as cold dark matter

Gauge Hierarchy Problem

LHC searches so far

- No significant deviations from the SM
- No clear signals for physics beyond the SM

Direct and indirect dark matter searches so far

No evidence of WIMPs

APPEC Committee Report

Relaxation Mechanism

Graham, Kaplan, Rajendran 2015

New approach to the gauge hierarchy problem

Cosmological evolution of the *relaxion* to select the Higgs mass: $\mu_{H}^{2}(\phi)|H|^{2}$

Relaxion slow-rolls while *scanning* μ_H^2 from (cutoff scale)² to negative, and *stops* due to barriers formed by *EWSB*

Relaxion Couplings

Relaxion-Higgs mixing after EWSB

Stringent constraints for relaxion at sub-MeV to multi-GeV from rare K and B meson decays and beam-dump experiments

Axionic Extension

Axion for Baryogenesis

Baryon Asymmetry

Baryogenesis

Sakharov's condition: B violation, C and CP violation, interactions out of thermal equilibrium

- \rightarrow In SM, B+L anomaly, CP phases in the fermion sector, EW phase transition (crossover)
- → Not sufficient

B+L violation by EW sphaleron transitions in symmetric phase

 \rightarrow EW phase transition is the last period affecting baryon asymmetry

Baryogenesis scenarios

- Nonzero B–L above the EW scale: Leptogenesis, Affleck-Dine, ...
- B+L generation at EW scale and sphaleron decoupling: EW baryogenesis LHC (direct searches) and EDM experiments c.f. severe constraint from electron EDM, $|d_e| < 10^{-29} e \cdot cm$

ACME II 2018

Axion-driven Baryogenesis

Axion derivative coupling to fermions

$$\frac{\partial_{\mu}\phi}{f}J^{\mu} \quad \text{with} \quad J^{\mu} \equiv \bar{\psi}\gamma^{\mu}\gamma_5\psi = (\rho, \vec{J})$$

 \rightarrow *Time derivative of axion*, $d\phi/dt$, serves as a *chemical potential* for the fermion number

Spontaneous baryogenesis Cohen, Kaplan 1987, and lots of works Recent review, e.g. Simone, Kobayashi 2016

Axion evolution + B violation much faster than thermalization

KSJ, Jung, Shin 2019, 2020

e.g. axion-driven baryogenesis with axion-dependent Higgs mass, $\mu_{H}^{2}(\phi)|H|^{2}$

observed baryon asymmetry for axion with mass, $m_{\phi} \sim \frac{(\text{weak scale})^2}{f}$

Summary

Why Axions?

Naturally *light* and *feebly interacting* scalar particle due to *shift symmetry*

Why axions?

- Appealing candidate for the unknown degrees of freedom: dark matter, inflaton
- Make the SM more natural by solving the strong CP problem, gauge hierarchy problem
- Explain the *matter-antimatter asymmetry* of the universe

Why Axions?

Theoretically well-motivated axions

→ Strong theoretical support for *axion searches*!

Potential to be probed by *cosmological*, *astrophysical*, and *laboratory* observations

→ Many *new experimental techniques* developed to detect axions

THANK YOU