Cosmic birefringence and its implication for axions

Kai Murai Tohoku University

International Workshop on Multi-probe approach to wavy dark matters Korea University Nov. 30 - Dec. 2, 2023

I. Introduction

- II. Cosmic birefringence by Axion-like particle
- III. Implications for ALPs
- IV. Summary

CMB polarization

CMB polarization and parity

If the CMB conserves parity, $\langle E_l B_l \rangle = 0$

EB correlation from birefringence

If the linear polarization rotates in the propagation, in general,

 $\left< E_l B_l \right> \neq 0$.

In particular, if all photons experience the same rotation angle β ,

After birefringence $\tilde{E}_l = E_l \cos(2\beta) - B_l \sin(2\beta)$ $\tilde{B}_l = E_l \sin(2\beta) + B_l \cos(2\beta)$

 $\tilde{C}_l^{EB} \simeq \tan(2\beta)\tilde{C}_l^{EE}$

(assuming $C_l^{EB} = 0$ and $C_l^{EE} \gg C_l^{BB}$)

Measurement of cosmic birefringence

Planck (and WMAP) data suggest the rotation angle eta at 68% C.L.:

$$\beta$$
 is
 { consistent with no frequency dependence. [Eskilt (2022)

Note: These estimate take advantage of galactic foreground to evade the uncertainty due to miscalibration of polarization.

Origin of cosmic birefringence

 $\beta = 0.342^{\circ\,+0.094^{\circ}}_{-0.091^{\circ}}~$ at 68% C.L. :

Isotropic

Independent of photon freq.

- Chern-Simons coupling with axion: $\phi F_{\mu\nu} \tilde{F}^{\mu\nu}$ [Carroll (1998)] Isotropic birefringence is possible. Rotation angle independent of photon frequency
- "Faraday rotation" by magnetic field [Pogosian et al. (2011)] Magnetic field parallel with photon propagation Rotation angle depends on photon frequencies.
- Birefringent dark photon
 - 🔶 Next talk

- I. Introduction
- II. Cosmic birefringence by axion-like particle
- III. Implications for ALPs
- IV. Summary

Axion-like particle (ALP) (Talks in Dec. 1, 2)

A pseudoscalar field arising from a SSB of global U(1) symmetry Chern-Simons coupling with the SM gauge fields: $\phi F_{\mu\nu} \tilde{F}^{\mu\nu}$, ... Wide range of mass and coupling

cf.) QCD axion: A possible solution to the strong CP problem. "Decay constant" controls its mass and couplings.

ALP-photon coupling

Photon coupled with axion-like particle

Let us consider
$$\mathscr{L} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g}{4}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$$
$$\downarrow \text{ EoM for } A_{\mu} \qquad \text{[Ni (1977); Turner & Widrow (1988)]}$$
$$\vec{A}'' - \vec{\nabla}^{2}\vec{A} + \vec{\nabla}\left(\vec{\nabla}\cdot\vec{A}\right) = g\left(\phi'\vec{\nabla}\times\vec{A} - \vec{\nabla}\phi\times\vec{A'}\right)$$

Consider a plain wave: $\overrightarrow{A} \propto e^{-i\omega\eta + i\overrightarrow{k}\cdot\overrightarrow{x}}$ with $\overrightarrow{k} = k\hat{z}$.

$$k_{\pm} = \omega \pm \frac{g}{2} \left(\phi' + \hat{\mathbf{k}} \cdot \vec{\nabla} \phi \right) = \omega \pm \frac{g}{2} \frac{\mathrm{d}}{\mathrm{d}\eta} \phi(\eta, \vec{x}(\eta)),$$
$$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix} \text{ have different dispersion relations.}$$
circular pol.

Rotation of linear polarization

$$k_{\pm} = \omega \pm \frac{g}{2} \frac{\mathrm{d}}{\mathrm{d}\eta} \phi(\eta, \vec{x}(\eta))$$

--> The plane of linear polarization rotates by

$$\beta = \frac{g}{2} \int d\eta \, \frac{d\phi}{d\eta} = \frac{g}{2} (\phi_{obs} - \phi_{emit})$$

[Carroll, Field, Jackiw (1990)

Birefringence by axion

$$\mathcal{L} \supset \frac{g}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \longrightarrow \beta = \frac{g}{2} (\phi_{\text{obs}} - \phi_{\text{emit}})$$

• eta is determined only by g, $\phi_{
m obs}$, and $\phi_{
m emit}$.

- Homogeneous mode of ϕ corresponds to isotropic β .
- β is independent of the photon frequency.

To explain the isotropic β , homogeneous $\phi(t)$ should vary between the last scattering and now.

I. Introduction

- II. Cosmic birefringence by Axion-like particle
- III. Implications for ALPs
- IV. Summary

Dark energy ALP

Let us consider a toy model:

$$V(\phi) = \frac{1}{2}m^2\phi^2$$

and also assume $m < H_0$:

$$\dot{\phi} \simeq -\frac{m^2}{3H}\phi$$

$$\beta \simeq \frac{gm^2 \phi_{\text{init}}}{6} \int \frac{\mathrm{d}t}{H(t)}$$

Simple relation for DE-like ALP

[Fujita, KM, Nakatsuka, Tsujikawa (2020)]

Heavier ALPs

If $m \gtrsim 10^{-31} \,\mathrm{eV}$, ϕ starts to oscillate before reionization. If $m \gtrsim 10^{-28} \,\mathrm{eV}$, ϕ starts to oscillate before recombination.

The time evolution of ϕ affects the shape of C_l^{EB} .

[Nakatsuka, Namikawa, Komatsu (2022)]

Implication for ALPs

Heavier ALPs

Depending on mass, ϕ evolves during/before the recombination.

The contributions from the reionization/recombination can be suppressed.

[Nakatsuka, Namikawa, Komatsu (2022)]

Implication for ALPs

Early dark energy (EDE)

EDE is motivated by Hubble tension and slowly oscillates after $z = O(10^4)$.

Due to the sign flip of ϕ at $z \sim 10^3$, the sign of C_l^{EB} can also flip.

 C_l^{EB} works a probe of $\phi(t)$.

Other effects of cosmic birefringence

Other effects of cosmic birefringence

• Anisotropic birefringence

If ALP is the origin of $\beta \simeq 0.3^{\circ}$, perturbations at LSS will induce anisotropic birefringence $\alpha(\hat{n})$, which is not detected yet.

Constraints on

(ALP isocurvature pert. primordial magnetic fields

[[]SPT Collaboration (2020)]

I. Introduction

- II. Cosmic birefringence by Axion-like particle
- III. Implications for ALPs
- IV. Summary

 Parity-violating signals in the CMB polar. data, which imply isotropic cosmic birefringence:

 $\beta \simeq 0.3^\circ$

• $\phi F \tilde{F}$ of ALP can be the origin of eta :

 $\beta = \frac{g}{2} \Delta \phi$

- While $C_l^{EB} \propto C_l^{EE}$ for uniform β , time evolution of ALP leads to different shape of C_l^{EB} .
- Cosmic birefringence by ALP can also be tested by anisotropic biref. and oscillation of polarization.

